Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 164
Filtrar
1.
Environ Int ; 186: 108619, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38603813

RESUMO

INTRODUCTION: Ambient air temperature may affect birth outcomes adversely, but little is known about their impact on foetal growth throughout pregnancy. We evaluated the association between temperature exposure during pregnancy and foetal size and growth in three European birth cohorts. METHODS: We studied 23,408 pregnant women from the English Born in Bradford cohort, Dutch Generation R Study, and Spanish INMA Project. Using the UrbClimTM model, weekly ambient air temperature exposure at 100x100m resolution at the mothers' residences during pregnancy was calculated. Estimated foetal weight, head circumference, and femur length at mid and late pregnancy and weight, head circumference, and length at birth were converted into standard deviation scores (SDS). Foetal growth from mid to late pregnancy was calculated (grams or centimetres/week). Cohort/region-specific distributed lag non-linear models were combined using a random-effects meta-analysis and results presented in reference to the median percentile of temperature (14 °C). RESULTS: Weekly temperatures ranged from -5.6 (Bradford) to 30.3 °C (INMA-Sabadell). Cold and heat exposure during weeks 1-28 were associated with a smaller and larger head circumference in late pregnancy, respectively (e.g., for 9.5 °C: -1.6 SDS [95 %CI -2.0; -0.4] and for 20.0 °C: 1.8 SDS [0.7; 2.9]). A susceptibility period from weeks 1-7 was identified for cold exposure and a smaller head circumference at late pregnancy. Cold exposure was associated with a slower head circumference growth from mid to late pregnancy (for 5.5 °C: -0.1 cm/week [-0.2; -0.04]), with a susceptibility period from weeks 4-12. No associations that survived multiple testing correction were found for other foetal or any birth outcomes. CONCLUSIONS: Cumulative exposure to cold and heat during pregnancy was associated with changes in foetal head circumference throughout gestation, with susceptibility periods for cold during the first pregnancy trimester. No associations were found at birth, suggesting potential recovery. Future research should replicate this study across different climatic regions including varying temperature profiles.


Assuntos
Desenvolvimento Fetal , Humanos , Feminino , Gravidez , Adulto , Temperatura , Coorte de Nascimento , Estudos de Coortes , Países Baixos , Exposição Materna , Temperatura Baixa , Europa (Continente) , Espanha , Inglaterra , Adulto Jovem
2.
Environ Int ; 186: 108604, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38564945

RESUMO

BACKGROUND: Air pollution exposure during pregnancy and childhood has been linked to executive function impairment in children, however, very few studies have assessed these two exposure periods jointly to identify susceptible periods of exposure. We sought to identify potential periods of susceptibility of nitrogen dioxide (NO2) exposure from conception to childhood on attentional function and working memory in school-aged children. METHODS: Within the Spanish INMA Project, we estimated residential daily NO2 exposures during pregnancy and up to 6 years of childhood using land use regression models (n = 1,703). We assessed attentional function at 4-6 years and 6-8 years, using the Conners Kiddie Continuous Performance Test and the Attention Network Test, respectively, and working memory at 6-8 years, using the N-back task. We used distributed lag non-linear models to assess the periods of susceptibility of each outcome, adjusting for potential confounders and correcting for multiple testing. We also stratified all models by sex. RESULTS: Higher exposure to NO2 between 1.3 and 1.6 years of age was associated with higher hit reaction time standard error (HRT-SE) (0.14 ms (95 % CI 0.05; 0.22) per 10 µg/m3 increase in NO2) and between 1.5 and 2.2 years of age with more omission errors (1.02 (95 % CI 1.01; 1.03) of the attentional function test at 4-6 years. Higher exposure to NO2 between 0.3 and 2.2 years was associated with higher HRT-SE (10.61 ms (95 % CI 3.46; 17.75) at 6-8 years only in boys. We found no associations between exposure to NO2 and working memory at 6-8 years. CONCLUSION: Our findings suggest that NO2 exposure during the first two years of life is associated with poorer attentional function in children from 4 to 8 years of age, especially in boys. These findings highlight the importance of exploring long-term effects of traffic-related air pollution exposure in older age groups.


Assuntos
Poluentes Atmosféricos , Atenção , Memória de Curto Prazo , Dióxido de Nitrogênio , Humanos , Dióxido de Nitrogênio/análise , Feminino , Memória de Curto Prazo/efeitos dos fármacos , Atenção/efeitos dos fármacos , Criança , Gravidez , Masculino , Pré-Escolar , Poluentes Atmosféricos/análise , Efeitos Tardios da Exposição Pré-Natal , Exposição Ambiental/estatística & dados numéricos , Poluição do Ar/estatística & dados numéricos , Poluição do Ar/efeitos adversos , Espanha
3.
Thorax ; 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38448222

RESUMO

OBJECTIVE: The existence of catch-up lung function growth and its predictors is uncertain. We aimed to identify lung function trajectories and their predictors in a population-based birth cohort. METHODS: We applied group-based trajectory modelling to z-scores of forced expiratory volume in 1 second (zFEV1) and z-scores of forced vital capacity (zFVC) from 1151 children assessed at around 4, 7, 9, 10, 11, 14 and 18 years. Multinomial logistic regression models were used to test whether potential prenatal and postnatal predictors were associated with lung function trajectories. RESULTS: We identified four lung function trajectories: a low (19% and 19% of the sample for zFEV1 and zFVC, respectively), normal (62% and 63%), and high trajectory (16% and 13%) running in parallel, and a catch-up trajectory (2% and 5%) with catch-up occurring between 4 and 10 years. Fewer child allergic diseases and higher body mass index z-score (zBMI) at 4 years were associated with the high and normal compared with the low trajectories, both for zFEV1 and zFVC. Increased children's physical activity during early childhood and higher zBMI at 4 years were associated with the catch-up compared with the low zFEV1 trajectory (relative risk ratios: 1.59 per physical activity category (1.03-2.46) and 1.47 per zBMI (0.97-2.23), respectively). No predictors were identified for zFVC catch-up growth. CONCLUSION: We found three parallel-running and one catch-up zFEV1 and zFVC trajectories, and identified physical activity and body mass at 4 years as predictors of zFEV1 but not zFVC catch-up growth.

4.
One Earth ; 7(2): 325-335, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38420618

RESUMO

Short-term exposure to ground-level ozone in cities is associated with increased mortality and is expected to worsen with climate and emission changes. However, no study has yet comprehensively assessed future ozone-related acute mortality across diverse geographic areas, various climate scenarios, and using CMIP6 multi-model ensembles, limiting our knowledge on future changes in global ozone-related acute mortality and our ability to design targeted health policies. Here, we combine CMIP6 simulations and epidemiological data from 406 cities in 20 countries or regions. We find that ozone-related deaths in 406 cities will increase by 45 to 6,200 deaths/year between 2010 and 2014 and between 2050 and 2054, with attributable fractions increasing in all climate scenarios (from 0.17% to 0.22% total deaths), except the single scenario consistent with the Paris Climate Agreement (declines from 0.17% to 0.15% total deaths). These findings stress the need for more stringent air quality regulations, as current standards in many countries are inadequate.

5.
Lancet Planet Health ; 8(2): e86-e94, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38331534

RESUMO

BACKGROUND: Climate change can directly impact temperature-related excess deaths and might subsequently change the seasonal variation in mortality. In this study, we aimed to provide a systematic and comprehensive assessment of potential future changes in the seasonal variation, or seasonality, of mortality across different climate zones. METHODS: In this modelling study, we collected daily time series of mean temperature and mortality (all causes or non-external causes only) via the Multi-Country Multi-City Collaborative (MCC) Research Network. These data were collected during overlapping periods, spanning from Jan 1, 1969 to Dec 31, 2020. We projected daily mortality from Jan 1, 2000 to Dec 31, 2099, under four climate change scenarios corresponding to increasing emissions (Shared Socioeconomic Pathways [SSP] scenarios SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5). We compared the seasonality in projected mortality between decades by its shape, timings (the day-of-year) of minimum (trough) and maximum (peak) mortality, and sizes (peak-to-trough ratio and attributable fraction). Attributable fraction was used to measure the burden of seasonality of mortality. The results were summarised by climate zones. FINDINGS: The MCC dataset included 126 809 537 deaths from 707 locations within 43 countries or areas. After excluding the only two polar locations (both high-altitude locations in Peru) from climatic zone assessments, we analysed 126 766 164 deaths in 705 locations aggregated in four climate zones (tropical, arid, temperate, and continental). From the 2000s to the 2090s, our projections showed an increase in mortality during the warm seasons and a decrease in mortality during the cold seasons, albeit with mortality remaining high during the cold seasons, under all four SSP scenarios in the arid, temperate, and continental zones. The magnitude of this changing pattern was more pronounced under the high-emission scenarios (SSP3-7.0 and SSP5-8.5), substantially altering the shape of seasonality of mortality and, under the highest emission scenario (SSP5-8.5), shifting the mortality peak from cold seasons to warm seasons in arid, temperate, and continental zones, and increasing the size of seasonality in all zones except the arid zone by the end of the century. In the 2090s compared with the 2000s, the change in peak-to-trough ratio (relative scale) ranged from 0·96 to 1·11, and the change in attributable fraction ranged from 0·002% to 0·06% under the SSP5-8.5 (highest emission) scenario. INTERPRETATION: A warming climate can substantially change the seasonality of mortality in the future. Our projections suggest that health-care systems should consider preparing for a potentially increased demand during warm seasons and sustained high demand during cold seasons, particularly in regions characterised by arid, temperate, and continental climates. FUNDING: The Environment Research and Technology Development Fund of the Environmental Restoration and Conservation Agency, provided by the Ministry of the Environment of Japan.


Assuntos
Mudança Climática , Temperatura Baixa , Temperatura , Estações do Ano , Estudos Prospectivos
6.
Genome Biol ; 25(1): 22, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38229171

RESUMO

BACKGROUND: Pubertal growth patterns correlate with future health outcomes. However, the genetic mechanisms mediating growth trajectories remain largely unknown. Here, we modeled longitudinal height growth with Super-Imposition by Translation And Rotation (SITAR) growth curve analysis on ~ 56,000 trans-ancestry samples with repeated height measurements from age 5 years to adulthood. We performed genetic analysis on six phenotypes representing the magnitude, timing, and intensity of the pubertal growth spurt. To investigate the lifelong impact of genetic variants associated with pubertal growth trajectories, we performed genetic correlation analyses and phenome-wide association studies in the Penn Medicine BioBank and the UK Biobank. RESULTS: Large-scale growth modeling enables an unprecedented view of adolescent growth across contemporary and 20th-century pediatric cohorts. We identify 26 genome-wide significant loci and leverage trans-ancestry data to perform fine-mapping. Our data reveals genetic relationships between pediatric height growth and health across the life course, with different growth trajectories correlated with different outcomes. For instance, a faster tempo of pubertal growth correlates with higher bone mineral density, HOMA-IR, fasting insulin, type 2 diabetes, and lung cancer, whereas being taller at early puberty, taller across puberty, and having quicker pubertal growth were associated with higher risk for atrial fibrillation. CONCLUSION: We report novel genetic associations with the tempo of pubertal growth and find that genetic determinants of growth are correlated with reproductive, glycemic, respiratory, and cardiac traits in adulthood. These results aid in identifying specific growth trajectories impacting lifelong health and show that there may not be a single "optimal" pubertal growth pattern.


Assuntos
Diabetes Mellitus Tipo 2 , Estudo de Associação Genômica Ampla , Adulto , Adolescente , Humanos , Criança , Pré-Escolar , Puberdade/genética , Fenótipo , Estatura/genética , Avaliação de Resultados em Cuidados de Saúde , Estudos Longitudinais
7.
Int J Hyg Environ Health ; 256: 114317, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38171265

RESUMO

The literature informing susceptible periods of exposure on children's neurodevelopment is limited. We evaluated the impacts of pre- and postnatal fine particulate matter (PM2.5) exposure on children's cognitive and motor function among 1303 mother-child pairs in the Spanish INMA (Environment and Childhood) Study. Random forest models with temporal back extrapolation were used to estimate daily residential PM2.5 exposures that we averaged across 1-week lags during the prenatal period and 4-week lags during the postnatal period. The McCarthy Scales of Children's Abilities (MSCA) were administered around 5 years to assess general cognitive index (GCI) and several subscales (verbal, perceptual-performance, memory, fine motor, gross motor). We applied distributed lag nonlinear models within the Bayesian hierarchical framework to explore periods of susceptibility to PM2.5 on each MSCA outcome. Effect estimates were calculated per 5 µg/m3 increase in PM2.5 and aggregated across adjacent statistically significant lags using cumulative ß (ßcum) and 95% Credible Intervals (95%CrI). We evaluated interactions between PM2.5 with fetal growth and child sex. We did not observe associations of PM2.5 exposure with lower GCI scores. We found a period of susceptibility to PM2.5 on fine motor scores in gestational weeks 1-9 (ßcum = -2.55, 95%CrI = -3.53,-1.56) and on gross motor scores in weeks 7-17 (ßcum = -2.27,95%CrI = -3.43,-1.11) though the individual lags for the latter were only borderline statistically significant. Exposure in gestational week 17 was weakly associated with verbal scores (ßcum = -0.17, 95%CrI = -0.26,-0.09). In the postnatal period (from age 0.5-1.2 years), we observed a window of susceptibility to PM2.5 on lower perceptual-performance (ß = -2.42, 95%CrI = -3.37,-1.46). Unexpected protective associations were observed for several outcomes with exposures in the later postnatal period. We observed no evidence of differences in susceptible periods by fetal growth or child sex. Preschool-aged children's motor function may be particularly susceptible to PM2.5 exposures experienced in utero whereas the first year of life was identified as a period of susceptibility to PM2.5 for children's perceptual-performance.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Efeitos Tardios da Exposição Pré-Natal , Gravidez , Feminino , Humanos , Pré-Escolar , Criança , Lactente , Poluentes Atmosféricos/análise , Teorema de Bayes , Material Particulado/análise , Cognição , Exposição Ambiental
8.
Sci Total Environ ; 912: 168806, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38016567

RESUMO

Few prior studies have explored windows of susceptibility to fine particulate matter (PM2.5) in both the prenatal and postnatal periods and children's attention-deficit/hyperactivity disorder (ADHD) symptoms. We analyzed data from 1416 mother-child pairs from the Spanish INMA (INfancia y Medio Ambiente) Study (2003-2008). Around 5 years of age, teachers reported the number of ADHD symptoms (i.e., inattention, hyperactivity/impulsivity) using the ADHD Diagnostic and Statistical Manual of Mental Disorders. Around 7 years of age, parents completed the Conners' Parent Rating Scales, from which we evaluated the ADHD index, cognitive problems/inattention, hyperactivity, and oppositional subscales, reported as age- and sex-standardized T-scores. Daily residential PM2.5 exposures were estimated using a two-stage random forest model with temporal back-extrapolation and averaged over 1-week periods in the prenatal period and 4-week periods in the postnatal period. We applied distributed lag non-linear models within the Bayesian hierarchical model framework to identify susceptible windows of prenatal or postnatal exposure to PM2.5 (per 5-µg/m3) for ADHD symptoms. Models were adjusted for relevant covariates, and cumulative effects were reported by aggregating risk ratios (RRcum) or effect estimates (ßcum) across adjacent susceptible windows. A similar susceptible period of exposure to PM2.5 (1.2-2.9 and 0.9-2.7 years of age, respectively) was identified for hyperactivity/impulsivity symptoms assessed ~5 years (RRcum = 2.72, 95% credible interval [CrI] = 1.98, 3.74) and increased hyperactivity subscale ~7 years (ßcum = 3.70, 95% CrI = 2.36, 5.03). We observed a susceptibility period to PM2.5 on risk of hyperactivity/impulsivity symptoms ~5 years in gestational weeks 16-22 (RRcum = 1.36, 95% CrI = 1.22, 1.52). No associations between PM2.5 exposure and other ADHD symptoms were observed. We report consistent evidence of toddlerhood as a susceptible window of PM2.5 exposure for hyperactivity in young children. Although mid-pregnancy was identified as a susceptible period of exposure on hyperactivity symptoms in preschool-aged children, this association was not observed at the time children were school-aged.


Assuntos
Transtorno do Deficit de Atenção com Hiperatividade , Gravidez , Feminino , Humanos , Pré-Escolar , Criança , Transtorno do Deficit de Atenção com Hiperatividade/induzido quimicamente , Transtorno do Deficit de Atenção com Hiperatividade/epidemiologia , Material Particulado , Teorema de Bayes , Coleta de Dados
9.
Environ Int ; 181: 108258, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37837748

RESUMO

BACKGROUND: The epidemiological evidence on the interaction between heat and ambient air pollution on mortality is still inconsistent. OBJECTIVES: To investigate the interaction between heat and ambient air pollution on daily mortality in a large dataset of 620 cities from 36 countries. METHODS: We used daily data on all-cause mortality, air temperature, particulate matter ≤ 10 µm (PM10), PM ≤ 2.5 µm (PM2.5), nitrogen dioxide (NO2), and ozone (O3) from 620 cities in 36 countries in the period 1995-2020. We restricted the analysis to the six consecutive warmest months in each city. City-specific data were analysed with over-dispersed Poisson regression models, followed by a multilevel random-effects meta-analysis. The joint association between air temperature and air pollutants was modelled with product terms between non-linear functions for air temperature and linear functions for air pollutants. RESULTS: We analyzed 22,630,598 deaths. An increase in mean temperature from the 75th to the 99th percentile of city-specific distributions was associated with an average 8.9 % (95 % confidence interval: 7.1 %, 10.7 %) mortality increment, ranging between 5.3 % (3.8 %, 6.9 %) and 12.8 % (8.7 %, 17.0 %), when daily PM10 was equal to 10 or 90 µg/m3, respectively. Corresponding estimates when daily O3 concentrations were 40 or 160 µg/m3 were 2.9 % (1.1 %, 4.7 %) and 12.5 % (6.9 %, 18.5 %), respectively. Similarly, a 10 µg/m3 increment in PM10 was associated with a 0.54 % (0.10 %, 0.98 %) and 1.21 % (0.69 %, 1.72 %) increase in mortality when daily air temperature was set to the 1st and 99th city-specific percentiles, respectively. Corresponding mortality estimate for O3 across these temperature percentiles were 0.00 % (-0.44 %, 0.44 %) and 0.53 % (0.38 %, 0.68 %). Similar effect modification results, although slightly weaker, were found for PM2.5 and NO2. CONCLUSIONS: Suggestive evidence of effect modification between air temperature and air pollutants on mortality during the warm period was found in a global dataset of 620 cities.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Cidades , Temperatura Alta , Dióxido de Nitrogênio/efeitos adversos , Dióxido de Nitrogênio/análise , Poluição do Ar/efeitos adversos , Poluição do Ar/análise , Poluentes Atmosféricos/efeitos adversos , Poluentes Atmosféricos/análise , Material Particulado/efeitos adversos , Material Particulado/análise , Exposição Ambiental/efeitos adversos , Exposição Ambiental/análise
10.
BMJ ; 383: e075203, 2023 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-37793695

RESUMO

OBJECTIVE: To investigate potential interactive effects of fine particulate matter (PM2.5) and ozone (O3) on daily mortality at global level. DESIGN: Two stage time series analysis. SETTING: 372 cities across 19 countries and regions. POPULATION: Daily counts of deaths from all causes, cardiovascular disease, and respiratory disease. MAIN OUTCOME MEASURE: Daily mortality data during 1994-2020. Stratified analyses by co-pollutant exposures and synergy index (>1 denotes the combined effect of pollutants is greater than individual effects) were applied to explore the interaction between PM2.5 and O3 in association with mortality. RESULTS: During the study period across the 372 cities, 19.3 million deaths were attributable to all causes, 5.3 million to cardiovascular disease, and 1.9 million to respiratory disease. The risk of total mortality for a 10 µg/m3 increment in PM2.5 (lag 0-1 days) ranged from 0.47% (95% confidence interval 0.26% to 0.67%) to 1.25% (1.02% to 1.48%) from the lowest to highest fourths of O3 concentration; and for a 10 µg/m3 increase in O3 ranged from 0.04% (-0.09% to 0.16%) to 0.29% (0.18% to 0.39%) from the lowest to highest fourths of PM2.5 concentration, with significant differences between strata (P for interaction <0.001). A significant synergistic interaction was also identified between PM2.5 and O3 for total mortality, with a synergy index of 1.93 (95% confidence interval 1.47 to 3.34). Subgroup analyses showed that interactions between PM2.5 and O3 on all three mortality endpoints were more prominent in high latitude regions and during cold seasons. CONCLUSION: The findings of this study suggest a synergistic effect of PM2.5 and O3 on total, cardiovascular, and respiratory mortality, indicating the benefit of coordinated control strategies for both pollutants.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Doenças Cardiovasculares , Poluentes Ambientais , Ozônio , Transtornos Respiratórios , Doenças Respiratórias , Humanos , Material Particulado/efeitos adversos , Material Particulado/análise , Ozônio/efeitos adversos , Ozônio/análise , Poluentes Atmosféricos/efeitos adversos , Poluentes Atmosféricos/análise , Poluição do Ar/efeitos adversos , Poluição do Ar/análise , Cidades , Fatores de Tempo , Exposição Ambiental/efeitos adversos
11.
Lancet Planet Health ; 7(8): e694-e705, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37558350

RESUMO

BACKGROUND: The global spatiotemporal pattern of mortality risk and burden attributable to tropical cyclones is unclear. We aimed to evaluate the global short-term mortality risk and burden associated with tropical cyclones from 1980 to 2019. METHODS: The wind speed associated with cyclones from 1980 to 2019 was estimated globally through a parametric wind field model at a grid resolution of 0·5°â€ˆ× 0·5°. A total of 341 locations with daily mortality and temperature data from 14 countries that experienced at least one tropical cyclone day (a day with maximum sustained wind speed associated with cyclones ≥17·5 m/s) during the study period were included. A conditional quasi-Poisson regression with distributed lag non-linear model was applied to assess the tropical cyclone-mortality association. A meta-regression model was fitted to evaluate potential contributing factors and estimate grid cell-specific tropical cyclone effects. FINDINGS: Tropical cyclone exposure was associated with an overall 6% (95% CI 4-8) increase in mortality in the first 2 weeks following exposure. Globally, an estimate of 97 430 excess deaths (95% empirical CI [eCI] 71 651-126 438) per decade were observed over the 2 weeks following exposure to tropical cyclones, accounting for 20·7 (95% eCI 15·2-26·9) excess deaths per 100 000 residents (excess death rate) and 3·3 (95% eCI 2·4-4·3) excess deaths per 1000 deaths (excess death ratio) over 1980-2019. The mortality burden exhibited substantial temporal and spatial variation. East Asia and south Asia had the highest number of excess deaths during 1980-2019: 28 744 (95% eCI 16 863-42 188) and 27 267 (21 157-34 058) excess deaths per decade, respectively. In contrast, the regions with the highest excess death ratios and rates were southeast Asia and Latin America and the Caribbean. From 1980-99 to 2000-19, marked increases in tropical cyclone-related excess death numbers were observed globally, especially for Latin America and the Caribbean and south Asia. Grid cell-level and country-level results revealed further heterogeneous spatiotemporal patterns such as the high and increasing tropical cyclone-related mortality burden in Caribbean countries or regions. INTERPRETATION: Globally, short-term exposure to tropical cyclones was associated with a significant mortality burden, with highly heterogeneous spatiotemporal patterns. In-depth exploration of tropical cyclone epidemiology for those countries and regions estimated to have the highest and increasing tropical cyclone-related mortality burdens is urgently needed to help inform the development of targeted actions against the increasing adverse health impacts of tropical cyclones under a changing climate. FUNDING: Australian Research Council and Australian National Health and Medical Research Council.


Assuntos
Tempestades Ciclônicas , Austrália , Clima , Temperatura , Vento
12.
Nutrients ; 15(9)2023 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-37432159

RESUMO

BACKGROUND: Gestational vitamin D levels may influence offspring growth and modulate adipogenesis. Findings from prospective studies are inconsistent, and few have evaluated the persistence of these associations into late childhood. OBJECTIVE: To examine the association between prenatal vitamin D levels and growth and adiposity in late childhood. METHODS: We included 2027 mother-child pairs from the INMA birth cohort. 25-hydroxyvitamin D3 (vitamin D3) levels were measured in serum at 13 weeks of pregnancy. Sex- and age-specific body mass index z-scores were calculated at 7 and 11 years, overweight was defined as z-score ≥ 85th percentile, and body fat mass was measured at 11 years. Z-score body mass index (zBMI) trajectories from birth to 11 years were identified using latent class growth analysis. RESULTS: The prevalence of vitamin D3 deficiency (<20 ng/mL) was 17.5%, and around 40% of the children had overweight at both ages. Associations between vitamin D levels and outcomes differed by sex. In boys, maternal vitamin D3 deficient status was associated with higher zBMI, higher fat mass percentage, higher odds of being overweight, and with an increased risk of belonging to lower birth size followed by accelerated BMI gain trajectory. In girls no associations were observed. CONCLUSION: Our results support a sex-specific programming effect of early pregnancy vitamin D3 levels on offspring body composition into late childhood observed in boys.


Assuntos
Deficiência de Vitamina D , Vitamina D , Criança , Masculino , Feminino , Gravidez , Humanos , Sobrepeso/epidemiologia , Estudos Prospectivos , Vitaminas , Colecalciferol , Deficiência de Vitamina D/epidemiologia , Composição Corporal
14.
Environ Int ; 174: 107825, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36934570

RESUMO

BACKGROUND: Evidence on the potential interactive effects of heat and ambient air pollution on cause-specific mortality is inconclusive and limited to selected locations. OBJECTIVES: We investigated the effects of heat on cardiovascular and respiratory mortality and its modification by air pollution during summer months (six consecutive hottest months) in 482 locations across 24 countries. METHODS: Location-specific daily death counts and exposure data (e.g., particulate matter with diameters ≤ 2.5 µm [PM2.5]) were obtained from 2000 to 2018. We used location-specific confounder-adjusted Quasi-Poisson regression with a tensor product between air temperature and the air pollutant. We extracted heat effects at low, medium, and high levels of pollutants, defined as the 5th, 50th, and 95th percentile of the location-specific pollutant concentrations. Country-specific and overall estimates were derived using a random-effects multilevel meta-analytical model. RESULTS: Heat was associated with increased cardiorespiratory mortality. Moreover, the heat effects were modified by elevated levels of all air pollutants in most locations, with stronger effects for respiratory than cardiovascular mortality. For example, the percent increase in respiratory mortality per increase in the 2-day average summer temperature from the 75th to the 99th percentile was 7.7% (95% Confidence Interval [CI] 7.6-7.7), 11.3% (95%CI 11.2-11.3), and 14.3% (95% CI 14.1-14.5) at low, medium, and high levels of PM2.5, respectively. Similarly, cardiovascular mortality increased by 1.6 (95%CI 1.5-1.6), 5.1 (95%CI 5.1-5.2), and 8.7 (95%CI 8.7-8.8) at low, medium, and high levels of O3, respectively. DISCUSSION: We observed considerable modification of the heat effects on cardiovascular and respiratory mortality by elevated levels of air pollutants. Therefore, mitigation measures following the new WHO Air Quality Guidelines are crucial to enhance better health and promote sustainable development.


Assuntos
Poluição do Ar , Doenças Cardiovasculares , Exposição Ambiental , Humanos , Poluentes Atmosféricos/toxicidade , Poluentes Atmosféricos/análise , Poluição do Ar/análise , Poluição do Ar/estatística & dados numéricos , Doenças Cardiovasculares/mortalidade , Cidades/epidemiologia , Exposição Ambiental/efeitos adversos , Exposição Ambiental/análise , Poluentes Ambientais , Temperatura Alta , Mortalidade , Material Particulado/efeitos adversos , Material Particulado/análise , Doenças Respiratórias/epidemiologia
15.
PLoS Med ; 20(1): e1004036, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36701266

RESUMO

BACKGROUND: Preterm birth is the leading cause of perinatal morbidity and mortality and is associated with adverse developmental and long-term health outcomes, including several cardiometabolic risk factors and outcomes. However, evidence about the association of preterm birth with later body size derives mainly from studies using birth weight as a proxy of prematurity rather than an actual length of gestation. We investigated the association of gestational age (GA) at birth with body size from infancy through adolescence. METHODS AND FINDINGS: We conducted a two-stage individual participant data (IPD) meta-analysis using data from 253,810 mother-child dyads from 16 general population-based cohort studies in Europe (Denmark, Finland, France, Italy, Norway, Portugal, Spain, the Netherlands, United Kingdom), North America (Canada), and Australasia (Australia) to estimate the association of GA with body mass index (BMI) and overweight (including obesity) adjusted for the following maternal characteristics as potential confounders: education, height, prepregnancy BMI, ethnic background, parity, smoking during pregnancy, age at child's birth, gestational diabetes and hypertension, and preeclampsia. Pregnancy and birth cohort studies from the LifeCycle and the EUCAN-Connect projects were invited and were eligible for inclusion if they had information on GA and minimum one measurement of BMI between infancy and adolescence. Using a federated analytical tool (DataSHIELD), we fitted linear and logistic regression models in each cohort separately with a complete-case approach and combined the regression estimates and standard errors through random-effects study-level meta-analysis providing an overall effect estimate at early infancy (>0.0 to 0.5 years), late infancy (>0.5 to 2.0 years), early childhood (>2.0 to 5.0 years), mid-childhood (>5.0 to 9.0 years), late childhood (>9.0 to 14.0 years), and adolescence (>14.0 to 19.0 years). GA was positively associated with BMI in the first decade of life, with the greatest increase in mean BMI z-score during early infancy (0.02, 95% confidence interval (CI): 0.00; 0.05, p < 0.05) per week of increase in GA, while in adolescence, preterm individuals reached similar levels of BMI (0.00, 95% CI: -0.01; 0.01, p 0.9) as term counterparts. The association between GA and overweight revealed a similar pattern of association with an increase in odds ratio (OR) of overweight from late infancy through mid-childhood (OR 1.01 to 1.02) per week increase in GA. By adolescence, however, GA was slightly negatively associated with the risk of overweight (OR 0.98 [95% CI: 0.97; 1.00], p 0.1) per week of increase in GA. Although based on only four cohorts (n = 32,089) that reached the age of adolescence, data suggest that individuals born very preterm may be at increased odds of overweight (OR 1.46 [95% CI: 1.03; 2.08], p < 0.05) compared with term counterparts. Findings were consistent across cohorts and sensitivity analyses despite considerable heterogeneity in cohort characteristics. However, residual confounding may be a limitation in this study, while findings may be less generalisable to settings in low- and middle-income countries. CONCLUSIONS: This study based on data from infancy through adolescence from 16 cohort studies found that GA may be important for body size in infancy, but the strength of association attenuates consistently with age. By adolescence, preterm individuals have on average a similar mean BMI to peers born at term.


Assuntos
Sobrepeso , Nascimento Prematuro , Criança , Gravidez , Feminino , Humanos , Recém-Nascido , Lactente , Pré-Escolar , Adolescente , Sobrepeso/epidemiologia , Sobrepeso/complicações , Idade Gestacional , Fatores de Risco , Nascimento Prematuro/epidemiologia , Estudos de Coortes , Peso ao Nascer , Índice de Massa Corporal
16.
Sci Total Environ ; 854: 158636, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36087670

RESUMO

BACKGROUND AND AIM: The associations between COVID-19 transmission and meteorological factors are scientifically debated. Several studies have been conducted worldwide, with inconsistent findings. However, often these studies had methodological issues, e.g., did not exclude important confounding factors, or had limited geographic or temporal resolution. Our aim was to quantify associations between temporal variations in COVID-19 incidence and meteorological variables globally. METHODS: We analysed data from 455 cities across 20 countries from 3 February to 31 October 2020. We used a time-series analysis that assumes a quasi-Poisson distribution of the cases and incorporates distributed lag non-linear modelling for the exposure associations at the city-level while considering effects of autocorrelation, long-term trends, and day of the week. The confounding by governmental measures was accounted for by incorporating the Oxford Governmental Stringency Index. The effects of daily mean air temperature, relative and absolute humidity, and UV radiation were estimated by applying a meta-regression of local estimates with multi-level random effects for location, country, and climatic zone. RESULTS: We found that air temperature and absolute humidity influenced the spread of COVID-19 over a lag period of 15 days. Pooling the estimates globally showed that overall low temperatures (7.5 °C compared to 17.0 °C) and low absolute humidity (6.0 g/m3 compared to 11.0 g/m3) were associated with higher COVID-19 incidence (RR temp =1.33 with 95%CI: 1.08; 1.64 and RR AH =1.33 with 95%CI: 1.12; 1.57). RH revealed no significant trend and for UV some evidence of a positive association was found. These results were robust to sensitivity analysis. However, the study results also emphasise the heterogeneity of these associations in different countries. CONCLUSION: Globally, our results suggest that comparatively low temperatures and low absolute humidity were associated with increased risks of COVID-19 incidence. However, this study underlines regional heterogeneity of weather-related effects on COVID-19 transmission.


Assuntos
COVID-19 , Humanos , Temperatura , Umidade , Cidades/epidemiologia , COVID-19/epidemiologia , Incidência , Raios Ultravioleta , China/epidemiologia
17.
Environ Res ; 216(Pt 2): 114628, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36279916

RESUMO

While prior studies report associations between fine particulate matter (PM2.5) exposure and fetal growth, few have explored temporally refined susceptible windows of exposure. We included 2328 women from the Spanish INMA Project from 2003 to 2008. Longitudinal growth curves were constructed for each fetus using ultrasounds from 12, 20, and 34 gestational weeks. Z-scores representing growth trajectories of biparietal diameter, femur length, abdominal circumference (AC), and estimated fetal weight (EFW) during early (0-12 weeks), mid- (12-20 weeks), and late (20-34 weeks) pregnancy were calculated. A spatio-temporal random forest model with back-extrapolation provided weekly PM2.5 exposure estimates for each woman during her pregnancy. Distributed lag non-linear models were implemented within the Bayesian hierarchical framework to identify susceptible windows of exposure for each outcome and cumulative effects [ßcum, 95% credible interval (CrI)] were aggregated across adjacent weeks. For comparison, general linear models evaluated associations between PM2.5 averaged across multi-week periods (i.e., weeks 1-11, 12-19, and 20-33) and fetal growth, mutually adjusted for exposure during each period. Results are presented as %change in z-scores per 5 µg/m3 in PM2.5, adjusted for covariates. Weeks 1-6 [ßcum = -0.77%, 95%CrI (-1.07%, -0.47%)] were identified as a susceptible window of exposure for reduced late pregnancy EFW while weeks 29-33 were positively associated with this outcome [ßcum = 0.42%, 95%CrI (0.20%, 0.64%)]. A similar pattern was observed for AC in late pregnancy. In linear regression models, PM2.5 exposure averaged across weeks 1-11 was associated with reduced late pregnancy EFW and AC; but, positive associations between PM2.5 and EFW or AC trajectories in late pregnancy were not observed. PM2.5 exposures during specific weeks may affect fetal growth differentially across pregnancy and such associations may be missed by averaging exposure across multi-week periods, highlighting the importance of temporally refined exposure estimates when studying the associations of air pollution with fetal growth.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Humanos , Feminino , Gravidez , Material Particulado/toxicidade , Material Particulado/análise , Poluentes Atmosféricos/toxicidade , Poluentes Atmosféricos/análise , Exposição Materna/efeitos adversos , Coorte de Nascimento , Teorema de Bayes , Estudos de Coortes , Poluição do Ar/efeitos adversos , Poluição do Ar/análise , Desenvolvimento Fetal , Peso Fetal
20.
Circulation ; 147(1): 35-46, 2023 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-36503273

RESUMO

BACKGROUND: Cardiovascular disease is the leading cause of death worldwide. Existing studies on the association between temperatures and cardiovascular deaths have been limited in geographic zones and have generally considered associations with total cardiovascular deaths rather than cause-specific cardiovascular deaths. METHODS: We used unified data collection protocols within the Multi-Country Multi-City Collaborative Network to assemble a database of daily counts of specific cardiovascular causes of death from 567 cities in 27 countries across 5 continents in overlapping periods ranging from 1979 to 2019. City-specific daily ambient temperatures were obtained from weather stations and climate reanalysis models. To investigate cardiovascular mortality associations with extreme hot and cold temperatures, we fit case-crossover models in each city and then used a mixed-effects meta-analytic framework to pool individual city estimates. Extreme temperature percentiles were compared with the minimum mortality temperature in each location. Excess deaths were calculated for a range of extreme temperature days. RESULTS: The analyses included deaths from any cardiovascular cause (32 154 935), ischemic heart disease (11 745 880), stroke (9 351 312), heart failure (3 673 723), and arrhythmia (670 859). At extreme temperature percentiles, heat (99th percentile) and cold (1st percentile) were associated with higher risk of dying from any cardiovascular cause, ischemic heart disease, stroke, and heart failure as compared to the minimum mortality temperature, which is the temperature associated with least mortality. Across a range of extreme temperatures, hot days (above 97.5th percentile) and cold days (below 2.5th percentile) accounted for 2.2 (95% empirical CI [eCI], 2.1-2.3) and 9.1 (95% eCI, 8.9-9.2) excess deaths for every 1000 cardiovascular deaths, respectively. Heart failure was associated with the highest excess deaths proportion from extreme hot and cold days with 2.6 (95% eCI, 2.4-2.8) and 12.8 (95% eCI, 12.2-13.1) for every 1000 heart failure deaths, respectively. CONCLUSIONS: Across a large, multinational sample, exposure to extreme hot and cold temperatures was associated with a greater risk of mortality from multiple common cardiovascular conditions. The intersections between extreme temperatures and cardiovascular health need to be thoroughly characterized in the present day-and especially under a changing climate.


Assuntos
Doenças Cardiovasculares , Insuficiência Cardíaca , Isquemia Miocárdica , Acidente Vascular Cerebral , Humanos , Temperatura Alta , Temperatura , Causas de Morte , Temperatura Baixa , Morte , Mortalidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...